EPFL

Exercises

Ecole Polytechnique Fédérale de Lausanne

MATHEMATICS DEPARTMENT

Spectral theory

Author Vincent Dumoncel Professor François Genoud

January 29, 2023

1. Operators on Banach and Hilbert spaces

Exercise 1.17. Prove that the inner product of a pre-Hilbert space is continuous in each variable, and that the norm is a continuous function.

Solution. We show that the inner product $\langle \cdot, \cdot \rangle \colon \mathcal{H} \longrightarrow \mathbb{C}$ is continuous in the first variable, and the other proof is similar. Fix then $x, z \in \mathcal{H}$ and $\varepsilon > 0$. Let $\delta \coloneqq \frac{\varepsilon}{\|z\|}$. If $y \in \mathcal{H}$ is so that $\|x - y\| < \delta$, the Cauchy-Schwarz inequality yields

$$|\langle x, z \rangle - \langle y, z \rangle| = |\langle x - y, z \rangle| \le ||x - y|| ||z|| < \delta ||z|| = \varepsilon$$

and thus $x \mapsto \langle x, z \rangle$ is continuous, for all $z \in \mathcal{H}$.

For the norm, fix $x \in \mathcal{H}$ and $\varepsilon > 0$. It is enough to take $\delta := \varepsilon$, because if $||x-y|| < \delta$, then

$$|||x|| - ||y||| \le ||x - y|| < \delta = \varepsilon.$$

Exercise 1.27. Let $A \in \mathcal{B}(X)$ and X be a Banach space. Prove that if $\lambda \in \rho(A)$, then $(A - \lambda I)^{-1}$ is defined on the whole space X. Conclude that when X is Banach, $\lambda \in \rho(A)$ if and only if $A - \lambda I$ is a bijective bounded operator.

Solution. By assumption $\lambda \in \rho(A)$ so $\text{Im}(A - \lambda I)$ is dense in *X*. It suffices to prove it is also closed. To this aim, we appeal the next lemma:

Lemma. Let *X* be a Banach space and let $A \in \mathcal{B}(X)$. Assume there exists C > 0 so that $||Au|| \ge C ||u||$ for any $u \in X$. Then Im(*A*) is closed in *X*.

Proof of the lemma. Let $(Au_n)_{n \in \mathbb{N}} \subset \text{Im}(A)$ be a sequence converging to $v \in X$. In particular, $(Au_n)_{n \in \mathbb{N}}$ is Cauchy in X, and since

$$\|u_n-u_m\|\leq \frac{1}{C}\|Au_n-A_m\|$$

for any $n, m \in \mathbb{N}$, we see that $(u_n)_{n \in \mathbb{N}}$ is also Cauchy in X. As X is complete, it has a limit, that we call u. From the boundedness of A, it follows that

$$v = \lim_{n \to \infty} Au_n = A(\lim_{n \to \infty} u_n) = Au$$

and $v \in \text{Im}(A)$, which is therefore closed in *X*. \Box

We can now finish the exercise. Indeed, as $\lambda \in \rho(A)$, $(A - \lambda I)^{-1}$ is bounded on its domain, whence

$$||u|| = ||(A - \lambda I)^{-1}(A - \lambda I)u|| \le ||(A - \lambda I)^{-1}||||(A - \lambda I)u||$$

for all $u \in X$. This means $A - \lambda I$ satisfies the hypothesis of the lemma with $C := \frac{1}{\|(A-\lambda I)^{-1}\|}$, and thus $A - \lambda I$ has closed range, which means $(A - \lambda I)^{-1}$ is actually defined on the whole X.

The second claim immediately follows.

Exercise 1.28. Let X be a Banach space, $\lambda \in \mathbb{C}$, and assume there is a sequence $(u_n)_{n \in \mathbb{N}} \subset X$ so that $||u_n|| = 1$ and $Au_n - \lambda u_n \longrightarrow 0$ as $n \longrightarrow \infty$. Prove that $\lambda \in \sigma(A)$.

Solution. If towards a contradiction we assume that $\lambda \in \rho(A)$, then $A - \lambda I$ is a bijective bounded operator with bounded inverse, and this implies

$$1 = ||u_n|| \le ||(A - \lambda I)^{-1}|| ||Au_n - \lambda u_n|| \longrightarrow 0$$

as $n \to \infty$, which is excluded. Thus $\lambda \in \sigma(A)$.

Exercise 1.38. Show that $(V^{\perp})^{\perp} = \overline{V}$ for any subspace $V \subset \mathcal{H}$. Next, prove that $V^{\perp} = \overline{V}^{\perp}$ for any subspace $V \subset \mathcal{H}$.

Solution. First, we note that $(V^{\perp})^{\perp}$ is a closed subset that contains V. This already implies that $(V^{\perp})^{\perp} \supset \overline{V}$. Conversely, let $v \in (V^{\perp})^{\perp}$. According to the orthogonal decomposition theorem, we have a splitting

$$\mathcal{H} = \overline{V} \oplus \overline{V}^{\perp}$$

and we can write $v = v_1 + v_2$, $v_1 \in \overline{V}$, $v_2 \in \overline{V}^{\perp}$. Since $V \subset \overline{V}$, it follows that $\overline{V}^{\perp} \subset V^{\perp}$, and in particular v is orthogonal to \overline{V}^{\perp} . Hence $\langle v, v_2 \rangle = 0$, and we get

$$0 = \langle v, v_2 \rangle = \langle v_1 + v_2, v_2 \rangle = \langle v_1, v_2 \rangle + \langle v_2, v_2 \rangle = ||v_2||^2$$

since $\langle v_1, v_2 \rangle = 0$. Thus $v_2 = 0$, meaning that $v = v_1 \in \overline{V}$. This proves $(V^{\perp})^{\perp} \subset \overline{V}$.

For the second equality, we first note that as $V \subset \overline{V}$, we already have $\overline{V}^{\perp} \subset V^{\perp}$. For the reverse inclusion, let $v \in V^{\perp}$, Fix also $x \in \overline{V}$, and choose $(x_n)_{n \in \mathbb{N}} \subset V$ a sequence converging to x. As $x_n \in V$ and $v \in V^{\perp}$ for all $n \in \mathbb{N}$, it follows that $\langle x_n, v \rangle = 0$ for all $n \in \mathbb{N}$, and the continuity of the inner product now leads to

$$\langle v, x \rangle = \lim_{n \to \infty} \langle x_n, v \rangle = 0.$$

Thus $v \in \overline{V}^{\perp}$, and this establishes the inclusion $V^{\perp} \subset \overline{V}^{\perp}$.

Exercise 1.40. Define the left and the right shift $S, T: \ell^2 \longrightarrow \ell^2$ by $(Su)_n := u_{n+1}$ and $(Tu)_1 := 0, (Tu)_n := u_{n-1}, n \ge 1$. Show that S and T are bounded, and compute ||S||, ||T||. Determine S^*, T^* , and find

Solution. First of all if $u \in \ell^2$ we have

 $\sigma_p(S), \sigma_c(S), \sigma_r(S), \sigma_p(T), \sigma_c(T), \sigma_r(T).$

$$||Su||_{2}^{2} = \sum_{n \ge 1} |(Su)_{n}|^{2} = \sum_{n \ge 1} |u_{n+1}|^{2} = ||u||_{2}^{2} - |u_{1}|^{2} \le ||u||_{2}^{2}$$

so that $||S|| \leq 1$. Moreover this inequality is an equality if $u_1 = 0$, whence in fact ||S|| = 1. The same reasoning gives ||T|| = 1. Next, let $u, v \in \ell^2$. Since

$$\langle Su, v \rangle = \sum_{n \ge 1} (Su)_n \overline{v_n}$$

Operators on Banach and Hilbert spaces

$$= \sum_{n \ge 1} u_{n+1} \overline{v_n}$$
$$= \sum_{n \ge 2} u_n \overline{v_{n-1}}$$
$$= \sum_{n \ge 1} u_n \overline{(Tv)_n}$$
$$= \langle u, Tv \rangle$$

we see that $S^* = T$. It also follows that $T^* = (S^*)^* = S$. We now turn to finding spectrums of S and T. Let $u \in \ell^2$ and $\lambda \in \mathbb{C}$. Then

$$Su = \lambda u \iff \forall n \ge 1, \ u_{n+1} = \lambda u_n$$

which inductively provides $u_n = \lambda^{n-1}u_1$, $n \in \mathbb{N}$. As $u \in \ell^2$, we must have $\sum_{n \ge 1} |u_n|^2 < \infty$, *i.e.*

$$|u_1|^2 \sum_{n \ge 1} |\lambda|^{2(n-1)} < \infty$$

which implies $|\lambda| < 1$. Conversely, if $|\lambda| < 1$, then λ is an eigenvalue of S, because for instance $u = (1, \lambda, \lambda^2, ...) \in \ell^2$ verifies $Su = \lambda u$. This establishes that

$$\sigma_p(S) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}$$

is the open unit disk in the complex plane. By a result from the course, $\sigma(S)$ must contain the closure of the open unit disk, which is the closed unit disk. On the other hand, each $\lambda \in \sigma(S)$ satisfies $|\lambda| \leq ||S|| = 1$, so $\sigma(S)$ is contained in the closed unit disk. Hence

$$\sigma(S) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$$

As also $\sigma_c(S) \cup \sigma_r(S) = \sigma(S) \setminus \sigma_p(S)$, we deduce that

$$\sigma_c(S) \cup \sigma_r(S) = \{\lambda \in \mathbb{C} : |\lambda| = 1\} = \mathbb{S}^1$$

is the boundary of the unit disk. Now let's turn to $\sigma_p(S^*) = \sigma_p(T)$. For $\lambda \neq 0$, the equation $Tu = \lambda u$ is equivalent to $0 = \lambda u_1$ and $u_{n-1} = \lambda u_n$ for all $n \geq 2$. Hence $u_1 = 0$, and this in turn implies $u_2 = 0$, $u_3 = 0$ and in fact $u_n = 0$ for all $n \geq 1$. Thus if $\lambda \neq 0$, it is not an eigenvalue. Likewise, $\lambda = 0$ cannot be an eigenvalue, and we have then $\sigma_p(T) = \emptyset$. This allows us to determine the residual spectrum of S, because

$$\sigma_r(S) = \{\lambda \in \mathbb{C} : \lambda \notin \sigma_p(S), \lambda \in \sigma_p(S^*)\} \\ = \{\lambda \in \mathbb{C} : \lambda \notin \sigma_p(S), \overline{\lambda} \in \sigma_p(T)\}.$$

As $\sigma_p(T)$ is empty, it follows that $\sigma_r(S) = \emptyset$ as well. Henceforth it appears that

$$\sigma_c(S) = \{\lambda \in \mathbb{C} : |\lambda| = 1\} = \mathbb{S}^1.$$

Likewise, $\sigma_r(T) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$ and $\sigma_c(T) = \mathbb{S}^1$.

Spectral theory

Exercise 1.42. Let \mathcal{H} be a complex Hilbert space, and $A \in \mathcal{B}(\mathcal{H})$. Prove that if $\langle Au, u \rangle = 0$ for all $u \in \mathcal{H}$ then A = 0.

Solution. Let $v, w \in \mathcal{H}$ and $\lambda \in \mathbb{C}$. Then, from the assumption

$$0 = \langle A(v + \lambda w), v + \lambda w \rangle = \lambda \langle Aw, v \rangle + \overline{\lambda} \langle Av, w \rangle.$$

For the special value $\lambda = 1$ we get $\langle Aw, v \rangle = -\langle Av, w \rangle$ and for the special value $\lambda = i$, we end it up with $\langle Aw, v \rangle = \langle Av, w \rangle$. Together these two conditions implies

$$\langle Av, w \rangle = 0$$

for all $v, w \in \mathcal{H}$. In particular fixing $v \in \mathcal{H}$ and setting w := Av provides $||Av||^2 = \langle Av, Av \rangle = 0$, whence Av = 0 for all $v \in \mathcal{H}$. Thus A = 0.

An another way of proceeding is to use the assumption and the polarization identity given in Exercise 1.45. This immediately yields to $\langle Au, v \rangle = 0$ for all $u, v \in \mathcal{H}$, and we conclude as above.

Lastly, note that it is essential for \mathcal{H} to be a *complex* Hilbert space. For a counter example in the real case one can consider $\mathcal{H} = \mathbb{R}^2$ and A the rotation by $\frac{\pi}{2}$. $A \neq 0$, but clearly $\langle Au, u \rangle = 0$ for all $u \in \mathbb{R}^2$.

Exercise 1.45. Prove that if \mathcal{H} is a pre-Hilbert space, then

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2 + i\|u + iv\|^2 - i\|u - iv\|^2)$$

for any $u, v \in \mathcal{H}$. Next prove that if A is an operator on a Hilbert space \mathcal{H} , then

$$\langle Au,v\rangle = \frac{1}{4}(\langle A(u+v),u+v\rangle - \langle A(u-v),u-v\rangle + i\langle A(u+iv),u+iv\rangle - i\langle A(u-iv),u-iv\rangle)$$

then for any $u, v \in \mathcal{H}$.

Solution. Expand directly the right-hand side of both equalities.

Exercise 1.46. Show that the subspace $\mathcal{S}(\mathcal{H})$ of symmetric operators is closed in $\mathcal{B}(\mathcal{H})$. Show also that if $S, B \in \mathcal{S}(\mathcal{H})$, then $SB \in \mathcal{S}(\mathcal{H})$ if and only if SB = BS.

Solution. Take a sequence $(A_n)_{n \in \mathbb{N}} \subset S(\mathcal{H})$, and suppose $A_n \longrightarrow A$ as $n \rightarrow \infty$. Then

$$||A - A^*|| = ||A - A_n + A_n - A^*||$$

$$\leq ||A - A_n|| + ||(A_n - A)^*||$$

$$= 2||A - A_n||$$

since $A_n^* = A_n$ and since $||S^*|| = ||S||$ for every bounded operator *S*. As $||A - A_n|| \longrightarrow 0$ as $n \to \infty$, we obtain $A = A^*$, and *A* is symmetric. This shows that $S(\mathcal{H})$ is closed in $\mathcal{B}(\mathcal{H})$.

Spectral theory

For the next claim, let S, B be two symmetric operators. If SB is also symmetric then $SB = (SB)^* = B^*S^* = BS$ so B commutes with S. Conversely, if SB = BS, we get that

$$SB = BS = B^*S^* = (SB)^*$$

whence SB is symmetric, as wanted.

Exercise 1.48. Let $A \in \mathcal{B}(\mathcal{H})$ be normal, *i.e.* $AA^* = A^*A$. Prove that A is invertible and has bounded inverse if and only if there exists a constant C > 0 so that $||Au|| \ge C||u||$ for all $u \in \mathcal{H}$.

Hint : Prove first that A is normal if and only if $||Au|| = ||A^*u||$ for any $u \in \mathcal{H}$. Deduce that a normal operator is injective if and only if it has dense range.

Solution. We start by proving the following result:

An operator $A \in \mathcal{B}(\mathcal{H})$ is invertible if and only if it has dense range and there exists C > 0 so that $||Au|| \ge C||u||$ for all $u \in \mathcal{H}$.

Proof. \implies : If $A \in \mathcal{B}(\mathcal{H})$ is invertible, it has dense range, and

$$||u|| = ||A^{-1}Au|| \le ||A^{-1}|| ||Au||$$

for any $u \in \mathcal{H}$, so we set $C \coloneqq \frac{1}{\|A^{-1}\|}$ and we have the second condition.

 \Leftarrow : Conversely, if there is C > 0 so that $||Au|| \ge C||u||$ for all $u \in \mathcal{H}$, then A has closed range, as seen in Exercise 1.27. By assumption, $\operatorname{Im}(A)$ is also dense, so it follows that $\operatorname{Im}(A) = \mathcal{H}$, and A is onto. Note lastly that injectivity is a consequence of the fact that $||Au|| \ge C||u||$, $u \in \mathcal{H}$. Thus A is injective, and then invertible.

Next, we prove the hint. Observe that

$$||Au||^2 - ||A^*u||^2 = \langle (A^*A - AA^*)u, u \rangle$$

for all $u \in \mathcal{H}$. If A is normal, the right-hand side vanishes whence $||Au|| = ||A^*u||$ for all $u \in \mathcal{H}$.

Conversely, if this condition holds for all $u \in \mathcal{H}$, we deduce $\langle (A^*A - AA^*)u, u \rangle = 0$ for all $u \in \mathcal{H}$, and Exercise 1.42 provides $A^*A - AA^* = 0$. Thus A is normal. An immediate consequence of this caracterization is that

$$\operatorname{Ker}(A) = \operatorname{Ker}(A^*)$$

for normal operators. This implies $\operatorname{Ker}(A) = \operatorname{Im}(A)^{\perp}$, and so $\operatorname{Ker}(A)^{\perp} = (\operatorname{Im}(A)^{\perp})^{\perp} = \overline{\operatorname{Im}(A)}$ by Exercise 1.38. Appealing the orthogonal decomposition theorem, we get

$$\mathcal{H} = \operatorname{Ker}(A) \oplus \operatorname{Ker}(A)^{\perp} = \operatorname{Ker}(A) \oplus \overline{\operatorname{Im}(A)}$$

which means exactly that *A* is injective if and only if it has dense range.

We can now finish the exercise. As already seen, if A is invertible, setting $C := \frac{1}{\|A^{-1}\|}$ guarantees $\|Au\| \ge C \|u\|$ for all $u \in \mathcal{H}$. Conversely this condition ensures injectivity of A, which in turn ensures surjectivity of A by what we just proved. Hence A is

invertible, and the boundedness of its inverse is a consequence of the open mapping theorem.

Exercise 1.49. Prove directly that the eigenvalues (if any) of a symmetric operator $A \in \mathcal{B}(\mathcal{H})$ are real.

Solution. If $\lambda \in \mathbb{C}$ is an eigenvalue of A, then there is $u \neq 0$ so that $Au = \lambda u$. We compute

$$\lambda \langle u, u \rangle = \langle \lambda u, u \rangle = \langle Au, u \rangle = \overline{\langle Au, u \rangle} = \overline{\lambda} \langle u, u \rangle$$

and dividing through by $\langle u, u \rangle = ||u||^2 \neq 0$ leads $\lambda = \overline{\lambda}$. Thus $\lambda \in \mathbb{R}$.

Exercise 1.57. Check that \leq is a partial order on the class of symmetric operators on \mathcal{H} .

Solution. Let $A, B, C \in \mathcal{B}(\mathcal{H})$ be symmetric. As the zero operator is positive, we have $A \leq A$, so \leq is reflexive. If $A \leq B$ and $B \leq C$, then C - B, B - A are positive. It follows that

$$\langle (C-A)u, u \rangle = \langle (C-B)u, u \rangle + \langle (B-A)u, u \rangle \ge 0$$

for all $u \in \mathcal{H}$ so C - A is positive, and \leq is transitive. Lastly, if $A \leq B$ and $B \leq A$, we have $\langle (B-A)u, u \rangle \geq 0$ and $\langle (A-B)u, u \rangle \leq 0$ for all $u \in \mathcal{H}$. This forces $\langle (A-B)u, u \rangle = 0$ for any $u \in \mathcal{H}$, and by Exercise 1.42 this implies A - B = 0, whence A = B. Thus \leq is antisymmetric, and we are done.

Exercise 1.59. Deduce from the proof of Theorem 1.47 that if A is a positive operator, then $\sigma(A) \subset [0, \infty)$.

Solution. Theorem 1.47 already shows that $\sigma(A) \subset \mathbb{R}$ if A is symmetric. It thus remain to exclude negative numbers from the spectrum. Let then $\lambda < 0$. As in the proof of 1.47, one has

$$\|(A - \lambda I)u\|^2 = \|Au\|^2 - 2\lambda \langle Au, u \rangle + \lambda^2 \|u\|^2$$

for all $u \in \mathcal{H}$. As now A is positive, $\langle Au, u \rangle \ge 0$, so $-2\lambda \langle Au, u \rangle \ge 0$ for all $u \in \mathcal{H}$. We then deduce that $||(A - \lambda I)u||^2 \ge \lambda^2 ||u||^2$ for all $u \in \mathcal{H}$, and thus $\lambda \in \rho(A)$. It follows that $\sigma(A) \subset [0, \infty)$.

Exercise 1.64. Show that the above result is false if *P* and *Q* do not commute.

Solution. Consider two operators *P* and *Q* on \mathbb{C}^2 given by

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ Q = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

These two operators are positive, but their product $PQ = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ is not positive, as it is even not self-adjoint.

Exercise 1.67. Prove that an operator $P \in \mathcal{B}(\mathcal{H})$ is positive if and only if there exists $A \in \mathcal{B}(\mathcal{H})$ so that $P = A^*A$.

Solution. If $P \in \mathcal{B}(\mathcal{H})$ is positive, it suffices to set $A := \sqrt{P}$ to get $A^*A = P$. Conversely, if $P = A^*A$, then

$$\langle Pu, u \rangle = \langle A^*Au, u \rangle = \langle Au, AU \rangle = ||Au||^2 \ge 0$$

for all $u \in \mathcal{H}$, whence *P* is positive.

Exercise 1.68. Let $A: \ell^2 \longrightarrow \ell^2$ be the *double right shift*, defined by $(Au)_1 = (Au)_2 := 0$ and $(Au)_n := u_{n-2}, n \ge 3$.

Show that A is bounded and compute ||A||. Determine A^* , and find $\sigma_p(A)$, $\sigma_c(A)$ and $\sigma_r(A)$. Is A positive? Find $B: \ell^2 \longrightarrow \ell^2$ so that $A = B^2$. What can we conclude?

Solution. First of all, we have

$$||Au||_2^2 = \sum_{n \ge 1} |(Au)_n|^2 = \sum_{n \ge 3} |u_{n-2}|^2 = ||u||_2^2$$

for all $u \in \ell^2$, so A is bounded and ||A|| = 1. It is easy to check that the adjoint of A is the *double left shift* $A^* \colon \ell^2 \longrightarrow \ell^2$, defined by $(Au)_n \coloneqq u_{n+2}, n \ge 1$, for any $u \in \ell^2$. The same reasoning as in Exercise 1.40 shows that

$$\sigma_p(A) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}$$

$$\sigma_c(A) = \mathbb{S}^1, \ \sigma_r(A) = \emptyset$$

and hence $\sigma(A) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$. To conclude, A is not positive, as it is not self-adjoint, but $A = B^2$ where $B \colon \ell^2 \longrightarrow \ell^2$ is the right shift. This shows that being positive is only a sufficient condition to have a square root, and is not necessary.

2. Spectral theorem I

Exercise 2.6. Let $S \in \mathcal{B}(\mathcal{H})$ be symmetric, and $(E_{\lambda})_{\lambda \in \mathbb{R}}$ be a corresponding spectral family. Prove that for any $P \in \mathbb{R}[X]$ and $u, v \in \mathcal{H}$, we have

$$\langle P(S)u,v\rangle = \int_m^{M+\varepsilon} P(\lambda) \,\mathrm{d}\langle E_\lambda u,v\rangle$$

where the right-hand side is the Riemann-Stieltjes integral of *P* with respect to $\phi(\lambda) := \langle E_{\lambda}u, v \rangle$.

Solution. It is enough to prove the identity in the case v = u, and the general case follows from the polarization identity (Exercise 1.45).

Let $u \in \mathcal{H}$. First observe that the right hand side is well-defined, since $\lambda \mapsto \langle E_{\lambda}u, u \rangle$ is of bounded variations. Indeed, if m, M are the lower and upper bounds of S and if

$$m = \lambda_0 < \lambda_1 < \cdots < \lambda_n = M + \varepsilon$$

is an arbitrary partition of $[m, M + \varepsilon]$, then

$$\begin{split} \sum_{k=1}^{n} |\langle E_{\lambda_{k}}u, u \rangle - \langle E_{\lambda_{k-1}}u, u \rangle| &= \sum_{k=1}^{n} \langle E_{\lambda_{k}}u, u \rangle - \langle E_{\lambda_{k-1}}u, u \rangle \\ &= \left\langle \sum_{k=1}^{n} (E_{\lambda_{k}} - E_{\lambda_{k-1}})u, u \right\rangle \\ &= \langle (E_{M+\varepsilon} - E_{m})u, u \rangle \\ &= ||u||^{2} \end{split}$$

since $(E_{\lambda})_{\lambda \in \mathbb{R}}$ is increasing and $E_{M+\varepsilon} = \mathrm{Id}_{\mathcal{H}}, E_m = 0$. Now, fix a sequence of partitions $(\Pi_l)_{l \in \mathbb{N}}$ with $|\Pi_l| \to 0$ as $l \to 0$. Write explicitly

$$m = \lambda_0^l < \lambda_1^l < \cdots < \lambda_{n_l}^l = M + \varepsilon$$

the partition Π_l , to get

$$\begin{split} \langle P(S)u,u\rangle &= \left\langle \lim_{l \to \infty} \sum_{k=1}^{n_l} P(\lambda_k^l) (E_{\lambda_k^l} - E_{\lambda_{k-1}^l})u,u \right\rangle \\ &= \lim_{l \to \infty} \sum_{k=1}^{n_l} P(\lambda_k^l) \langle (E_{\lambda_k^l} - E_{\lambda_{k-1}^l})u,u \rangle \\ &= \lim_{l \to \infty} \sum_{k=1}^{n_l} P(\lambda_k^l) (\langle E_{\lambda_k^l}u,u \rangle - \langle E_{\lambda_{k-1}^l}u,u \rangle) \\ &= \int_m^{M+\varepsilon} P(\lambda) \, \mathrm{d} \langle E_{\lambda}u,u \rangle \end{split}$$

as claimed.

3. The spectral theorem for self-adjoint operators

Exercise 3.9. Let $\phi \in L^{\infty}(\mathbb{R})$ and consider the multiplication operator $T: L^{2}(\mathbb{R}) \longrightarrow L^{2}(\mathbb{R})$ defined as $(Tu)(x) := \phi(x)u(x), x \in \mathbb{R}$. Show that T is bounded and compute its norm. Find T^{*} , and determine under which condition T is symmetric.

Now, suppose that $\lim_{x\to+\infty} |\phi(x)| = +\infty$. Show that T is unbounded, and find its domain. Find T^* .

Solution. If $\phi \in L^{\infty}(\mathbb{R})$, we get that

$$||Tu||_{2}^{2} = \int_{R} |\phi(x)|^{2} |u(x)|^{2} \, \mathrm{d}x \le ||\phi||_{\infty}^{2} ||u||_{2}^{2}$$

for all $u \in L^2(\mathbb{R})$, whence T is bounded and $||T|| \leq ||\phi||_{\infty}$. Now let $\varepsilon > 0$. By definition of $||\phi||_{\infty}$, we may find a subset $E \subset \mathbb{R}$ of Lebesgue measure |E| > 0 so that $|\phi(x)| \geq ||\phi||_{\infty} - \varepsilon$. Set then $u \coloneqq \frac{1}{\sqrt{|E|}} \mathbf{1}_E$, and observe that

$$||Tu||_{2}^{2} = \int_{\mathbb{R}} |\phi(x)|^{2} |u(x)|^{2} \, \mathrm{d}x \ge (||\phi||_{\infty} - \varepsilon)^{2} = (||\phi||_{\infty} - \varepsilon)^{2} ||u||_{2}^{2}$$

which in turn implies $||Tu|| \ge ||\phi||_{\infty} - \varepsilon$. As $\varepsilon > 0$ is arbitrary, we get $||T|| \ge ||\phi||_{\infty}$, and we conclude that $||T|| = ||\phi||_{\infty}$. To continue, the computation

$$\langle Tu, v \rangle = \int_{R} \phi(x)u(x)\overline{v(x)} \, \mathrm{d}x = \int_{R} u(x)\overline{\phi(x)}\overline{v(x)} \, \mathrm{d}x$$

valid for all $u, v \in L^2(\mathbb{R})$, shows that the adjoint of T is given by $T^* \colon L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R})$, $(T^*u)(x) \coloneqq \overline{\phi(x)}u(x)$. Then, it follows that T is symmetric if and only if $\overline{\phi(x)} = \phi(x)$ for all $x \in \mathbb{R}$, *i.e.* ϕ is \mathbb{R} -valued.

Let us now suppose $\lim_{x \to +\infty} |\phi(x)| = +\infty$. The domain of *T* is then

$$\mathcal{D}_T \coloneqq \left\{ u \in L^2(\mathbb{R}) : \int_{\mathbb{R}} |\phi(x)|^2 |u(x)|^2 \, \mathrm{d}x < \infty \right\}.$$

Now let $k \in \mathbb{N}$. By assumption, we can find a subset $E_k \subset \mathbb{R}$ of Lebesgue measure $|E_k| > 0$ so that $|\varphi(x)| \ge k$ for a.e. $x \in E_k$. Let then $u_k := \frac{1}{\sqrt{|E_k|}} \mathbf{1}_{E_k}$ to get

$$||Tu_k||_2^2 = \int_{\mathbb{R}} |\phi(x)|^2 |u_k|^2 \, \mathrm{d}x \ge k^2 = k^2 ||u_k||_2^2$$

for every $k \in \mathbb{N}$. Hence $||T|| \ge k$ for all $k \in \mathbb{N}$, and *T* is unbounded.

We now claim that $\mathcal{D}_{T^*} = \mathcal{D}_T$ and that $T^*v = \overline{\phi}v$ for all $v \in \mathcal{D}_{T^*}$. First of all, if $v \in \mathcal{D}_T$, the mapping $u \longrightarrow \langle Tu, v \rangle$ is bounded on \mathcal{D}_T , by the Cauchy-Schwarz inequality. This already proves $v \in \mathcal{D}_{T^*}$, and additionally

$$\langle Tu,v\rangle = \int_{\mathbb{R}} \phi(x)u(x)\overline{v(x)} \, \mathrm{d}x = \int_{\mathbb{R}} u(x)\overline{\phi(x)}v(x) \, \mathrm{d}x = \langle u,\overline{\phi}v\rangle$$

whence $T^*v = \overline{\phi}v$ on D_T . It remains to prove $\mathcal{D}_{T^*} \subset \mathcal{D}_T$. Let then $v \in \mathcal{D}_{T^*}$, so that

$$\langle Tu,v\rangle = \langle u,T^*v\rangle$$

for all $u \in \mathcal{D}_T$. This last equality can be written as

$$\int_{\mathbb{R}} u(x) \overline{\overline{\phi(x)}v(x)} \, \mathrm{d}x = \int_{\mathbb{R}} u(x) \overline{T^*v(x)} \, \mathrm{d}x$$

for all $u \in \mathcal{D}_T$. Thus $\langle u, \overline{\phi}v - T^*v \rangle = 0$ for all $u \in \mathcal{D}_T$ and as the latter is dense in $L^2(\mathbb{R})$, it follows that $T^*v = \overline{\phi}v$ and $\mathcal{D}_{T^*} \subset \mathcal{D}_T$.

Exercise 3.11. Show that U, V are both bounded, unitary and satisfy $U^2 = \operatorname{Id}_{\mathcal{H}\oplus\mathcal{H}} = -V^2$. Show that U preserves the inner product on $\mathcal{H} \oplus \mathcal{H}$, and that for any subspace $X \subset \mathcal{H} \oplus \mathcal{H}$, we have $V(X^{\perp}) = V(X)^{\perp}$.

Solution. That U, V are bounded and satisfy $U^2 = \operatorname{Id}_{\mathcal{H} \oplus \mathcal{H}} = -V^2$ follow from the definition. We prove that V is unitary, and the proof for U is similar. Let $(u, v), (z, w) \in \mathcal{H} \oplus \mathcal{H}$, and write

$$\begin{split} \langle V(u,v),(z,w)\rangle &= \langle (v,-u),(z,w)\rangle \\ &= \langle v,z\rangle - \langle u,w\rangle \\ &= \langle (u,v),(-w,z)\rangle \end{split}$$

to deduce that $V^*(u, v) := (-v, u), u, v \in \mathcal{H}$, is the adjoint of V. Hence $V^* = -V = V^{-1}$, and V is unitary. To continue, U clearly preserves the inner product of $\mathcal{H} \oplus \mathcal{H}$. Lastly, fix $X \subset \mathcal{H} \oplus \mathcal{H}$. First let $(u, v) \in V(X^{\perp})$, and write (u, v) = V(z, w) = (w, -z) for some $(z, w) \in X^{\perp}$. Now if $(s, t) \in X$, then

$$\langle (u,v), V(s,t) \rangle = \langle (w,-z), (t,-s) \rangle = \langle w,t \rangle + \langle z,s \rangle = \langle (z,w), (s,t) \rangle = 0$$

as $(s,t) \in X$ and $(z,w) \in X^{\perp}$. This proves that $V(X^{\perp}) \subset V(X)^{\perp}$, and the reverse inclusion is similar.

Exercise 3.19. Let $T: D_T \longrightarrow \mathcal{H}$ be densely defined. (i) Show that T is closable if and only if T^* is densely defined, and that in this case $\overline{T} = T^{**}$.

(ii) Show that if T is densely defined and closable, then $(\overline{T})^* = T^*$.

Solution. (i) Suppose first that T is closable, *i.e.* there is an operator S with $T \subset S$ and $G_S = \overline{G_T}$. Then $S^* \subset T^*$ and in particular $\mathcal{D}_{S^*} \subset \mathcal{D}_{T^*}$. Now S is densely defined (because its domain contains \mathcal{D}_T which is already dense by assumption) and closed, so Theorem 3.13 ensures that \mathcal{D}_{S^*} is dense, and thus \mathcal{D}_{T^*} is dense as well. Hence T^* is densely defined.

Conversely, suppose T^* is densely defined. This guarantees that $T^{**} := (T^*)^*$ exists. Now using Lemma 3.12 we compute that

$$G_{T^{**}} = G_{(T^*)^*} = V(\overline{G_{T^*}})^{\perp} = V(G_{T^*})^{\perp} = V(G_{T^*}^{\perp}) = V(V(\overline{G_T})) = -\overline{G_T} = \overline{G_T}$$

using that the graph of T^* is closed (by Proposition 3.8), that V preserves orthogonality, that $V^2 = -\text{Id}_{\mathcal{H}\oplus\mathcal{H}}$ (Exercise 3.11) and that $\overline{G_T}$ is a subspace. Hence T is closable and $\overline{T} = T^{**}$.

(ii) We directly compute that

$$G_{(\overline{T})^*} = V(\overline{G_{\overline{T}}})^{\perp} = V(G_{\overline{T}})^{\perp} = V(\overline{G_T})^{\perp} = G_{T^*}$$

using Lemma 3.12 and that \overline{T} is closed. Hence $(\overline{T})^* = T^*$ as claimed.

Exercise 3.24. Let $\mathcal{H} = L^2(\mathbb{R})$, and $H: \mathcal{D}_H \longrightarrow \mathcal{H}, \mathcal{D}_H := C_0^{\infty}(\mathbb{R}), H := -\frac{d^2}{dx^2}$. (i) Prove that H is symmetric.

(ii) Prove that $H^* = -\frac{d^2}{dx^2}$ on the domain

$$\mathcal{D}_{H^*} = \{ v \in \mathcal{H} : v \in C^1(\mathbb{R}), \ v' \in AC[a, b] \text{ for any } -\infty < a < b < +\infty, \ v'' \in L^2(\mathbb{R}) \}.$$

Hint: To prove the inclusion of \mathcal{D}_{H^*} into the right-hand side, think to Du-Bois Reymond's lemma.

(iii) Is *H* self-adjoint? essentially self-adjoint?

Solution. (i) $\mathcal{D}_{\mathcal{H}}$ is dense in $\mathcal{H} = L^2(\mathbb{R})$, and for all $u, v \in \mathcal{D}_H$ one has

$$\langle Hu,v\rangle = \int_{\mathbb{R}} -u''(x)\overline{v(x)} \, \mathrm{d}x = \int_{\mathbb{R}} u(x)\overline{-v''(x)} \, \mathrm{d}x = \langle u,Hv\rangle$$

integrating by parts twice and using that u, v vanish at infinity. By Lemma 3.16, H is symmetric.

(ii) Let

$$\mathcal{D} \coloneqq \{ v \in \mathcal{H} : v \in C^1(\mathbb{R}), v' \in AC[a, b] \text{ for any } -\infty < a < b < +\infty, v'' \in L^2(\mathbb{R}) \}.$$

First, let $v \in \mathcal{D}$. Then

$$\langle Hu, v \rangle = \int_{\mathbb{R}} u(x) \overline{-v''(x)} \, \mathrm{d}x = \langle u, -v'' \rangle$$

for any $u \in \mathcal{D}_H$, whence $|\langle Hu, v \rangle| \leq ||u|| ||v''||$ for any $u \in \mathcal{D}_H$ by Cauchy-Schwarz. Thus $v \in \mathcal{D}_{H^*}$ and as

$$\langle u, H^*v \rangle = \langle Hu, v \rangle = \langle u, -v'' \rangle$$

for all $u \in \mathcal{D}_H$ which is dense, we must have $H^*v = -v''$ on \mathcal{D} . Hence $\mathcal{D} \subset \mathcal{D}_{H^*}$ and $H^* = -\frac{\mathrm{d}^2}{\mathrm{d}x^2}$ on \mathcal{D} .

Conversely, let $v \in \mathcal{D}_{H^*}$. Then the function

$$\varphi(x) \coloneqq \int_0^x \int_0^y H^* v(z) \, \mathrm{d}z \mathrm{d}y$$

is in $C^1(\mathbb{R})$, in AC[0,1] and $\varphi'' = H^*v \in L^2(\mathbb{R})$. In other words, $\varphi \in \mathcal{D}$. Moreover, for any $u \in \mathcal{D}_H$ we also have

$$\int_{\mathbb{R}} -u''(x)\overline{v(x)} \, \mathrm{d}x = \langle Hu, v \rangle = \langle u, H^*v \rangle = \langle u, \varphi'' \rangle = \int_{\mathbb{R}} u''(x)\overline{\varphi(x)} \, \mathrm{d}x$$

and it follows that

$$\int_{\mathbb{R}} u''(x) \overline{\varphi(x) + v(x)} \, \mathrm{d}x = 0$$

for all $u \in \mathcal{D}_H$. By the Du-Bois Reymond lemma, there exist $c_0, c_1 \in \mathbb{C}$ so that $v(x) = \varphi(x) + c_1 x + c_0$, and thus $v \in \mathcal{D}$ as well. Hence, $\mathcal{D}_{H^*} \subset \mathcal{D}$ and we are done.

(iii) H cannot be self-adjoint, as its domain and the domain of its adjoint do not coincide. However, it is in fact essentially self-adjoint. To prove this, we make use of Theorem 3.22, and it is enough to prove that Im(H+iI), Im(H-iI) are dense in \mathcal{H} . Equivalently, we show that Ker(H+iI) and Ker(H-iI) reduce to $\{0\}$. If $u \in \text{Ker}(H+iI)$, then

$$u'' = iu$$

Solving this differential equation provides two independent solutions

$$u_1(x) = \exp\left(\frac{1+i}{\sqrt{2}}x\right), \ u_1(x) = \exp\left(-\frac{1+i}{\sqrt{2}}x\right).$$

Since neither belong to $L^2(\mathbb{R})$, we conclude indeed that $\operatorname{Ker}(H+iI) = \{0\}$, and similarly for the second kernel. Thus H is essentially self-adjoint.

4. Applications to quantum mechanics

Exercise 4.1. Check that $U \in \mathcal{B}(\mathcal{H})$ is unitary if and only if U is surjective and $\langle Uu, Uv \rangle = \langle u, v \rangle$ for all $u, v \in \mathcal{H}$. Is the surjectivity assumption really necessary? Deduce that a unitary operator has norm 1.

Solution. First, if *U* is unitary, then in particular $U^*U = \text{Id}_{\mathcal{H}}$ and thus

$$\langle Uu, Uv \rangle - \langle u, v \rangle = \langle U^*Uu, v \rangle - \langle u, v \rangle = \langle (U^*U - \mathrm{Id}_{\mathcal{H}})u, v \rangle = 0$$

for any $u, v \in \mathcal{H}$. We deduce that $\langle Uu, Uv \rangle = \langle u, v \rangle$ for all $u, v \in \mathcal{H}$.

Conversely, note that preserving the inner product forces U to be injective, and thus invertible, and additionally

$$\langle (U^*U - \mathrm{Id})u, v \rangle = \langle Uu, Uv \rangle - \langle u, v \rangle = 0$$

for all $u, v \in \mathcal{H}$, whence $U^*U = \mathrm{Id}_{\mathcal{H}}$ by Exercise 1.42. Next observe that

$$U^{*}(UU^{*})U = (U^{*}U)(U^{*}U) = \mathrm{Id}_{\mathcal{H}} = U^{*}U$$

and multiplying from the left by $(U^*)^{-1}$ and from the right by U^{-1} provides $UU^* = Id_{\mathcal{H}}$. It follows that U is unitary, and also easily that U has norm 1.

The surjectivity assumption is crucial. Indeed the right shift A on $\ell^2(\mathbb{N})$ preserves the inner product, but is not surjective, as any sequence whose first coordinate is not 0 does not lie in its image. On the other hand, it is not a unitary operator as its adjoint A^* is the left shift and that the composite AA^* is not the identity on $\ell^2(\mathbb{N})$.

Exercise 4.3. Show that a one-parameter unitary group $(U_t)_{t \in \mathbb{R}}$ is strongly continuous if and only if it is weakly continuous.

Solution. Using the continuity of the inner product in the first variable (Exercise 1.17), it follows easily that a strongly continuous one-parameter unitary group is weakly continuous.

Let us show the converse. Suppose $t_n \to t^*$, where $(t_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ and $t^* \in \mathbb{R}$. Let $u \in \mathcal{H}$, and write

$$||U_{t_n}u - U_{t^*}u||^2 = ||U_{t_n}u||^2 + ||U_{t^*}u||^2 - 2\operatorname{Re}\langle U_{t_n}u, U_{t^*}u\rangle = 2||u||^2 - 2\operatorname{Re}\langle U_{t_n}u, U_{t^*}u\rangle$$

using that $U_{t^*}, U_{t_n}, n \in \mathbb{N}$, are unitary. As $t \mapsto \langle U_t u, U_{t^*} u \rangle$ is continuous from \mathbb{R} to \mathbb{C} by assumption, $\langle U_{t_n} u, U_{t^*} u \rangle$ converges to $||U_{t^*} u||^2 = ||u||^2$ as $n \to \infty$. Henceforth

$$\lim_{n \to \infty} \|U_{t_n} u - U_{t^*} u\|^2 = 2\|u\|^2 - 2\|u\|^2 = 0$$

and thus $U_{t_n}u \to U_{t^*}u$ as $n \to \infty$. This shows that $t \mapsto U_t u$ is continuous, and thus $(U_t)_{t \in \mathbb{R}}$ is strongly continuous.

Exercise 4.4. For $a \in \mathbb{R}$, let $U_a : L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R})$, $(U_a f)(x) := f(x - a)$. Show that $(U_a)_{a \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group.

Solution. Clearly, $U_0 = \text{Id}_{L^2(\mathbb{R})}$ and if $a, a' \in \mathbb{R}$, $f \in L^2(\mathbb{R})$, then

$$U_a(U_{a'}f)(x) = (U_{a'}f)(x-a) = f(x-a-a') = f(x-(a+a')) = (U_{a+a'}f)(x)$$

for any $x \in \mathbb{R}$, whence $U_a U_{a'} = U_{a+a'}$ for all $a, a' \in \mathbb{R}$. In particular, if $a \in \mathbb{R}$, U_a is invertible (its inverse is U_{-a}) and it is thus enough to prove its preserves the inner product on $L^2(\mathbb{R})$ to prove it is unitary. Let then $f, g \in L^2(\mathbb{R})$, and note that

$$\langle U_a f, U_a g \rangle = \int_{\mathbb{R}} (U_a f)(x) \overline{(U_a g)(x)} \, \mathrm{d}x$$

$$= \int_{\mathbb{R}} f(x-a) \overline{g(x-a)} \, \mathrm{d}x$$

$$= \int_{\mathbb{R}} f(y) \overline{g(y)} \, \mathrm{d}y$$

$$= \langle f, g \rangle$$

by a change of variable. Hence $(U_a)_{a \in \mathbb{R}}$ is a one-parameter unitary group.

Let us now check the strong continuity. Let $f \in L^2(\mathbb{R})$, $a \in \mathbb{R}$ and $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ so that $a_n \to a$. Let $\varepsilon > 0$. As continuously differentiable compactly supported functions are dense in $L^2(\mathbb{R})$, we may find $g \in C^1(\mathbb{R})$ supported on a compact set $K \subset \mathbb{R}$ so that

$$\|f-g\|_2^2 < \varepsilon.$$

Now we write

$$\begin{aligned} \|U_{a_n}f - U_af\|_2^2 &= \int_{\mathbb{R}} |f(x - a_n) - f(x - a)|^2 \, \mathrm{d}x \\ &\leq \int_{\mathbb{R}} |f(x - a_n) - g(x - a_n)|^2 \, \mathrm{d}x + \int_{\mathbb{R}} |g(x - a_n) - g(x - a)|^2 \, \mathrm{d}x \\ &+ \int_{\mathbb{R}} |g(x - a) - f(x - a)|^2 \, \mathrm{d}x \end{aligned}$$

for all $n \in \mathbb{N}$. The first and last integral are bounded by ε . On the other hand, by the mean value theorem, we may write

$$|g(x-a_n) - g(x-a)|^2 = |g'(c)|^2 |a_n - a|^2$$

for some c between a_n and a, and as $g \in C^1(\mathbb{R})$, its derivative g' is continuous on the compact K, therefore bounded, and there is C > 0 so that

$$|g(x-a_n) - g(x-a)|^2 \le C|a_n - a|^2, \ n \in \mathbb{N}.$$

Thus, the second integral above is bounded by $C|K||a_n - a|^2$, and since $a_n \to a$ as $n \to \infty$, it follows that

$$\lim_{n\to\infty} \|U_{a_n}f - U_af\|_2^2 \le 2\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we deduce that $U_{a_n}f \to U_af$ as $n \to \infty$, and $(U_a)_{a\in\mathbb{R}}$ is strongly continuous.