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1. Operators on Banach and Hilbert spaces

Exercise 1.17. Prove that the inner product of a pre-Hilbert space is continuous
in each variable, and that the norm is a continuous function.

Solution. We show that the inner product ⟨·, ·⟩ : H −→ ℂ is continuous in the first
variable, and the other proof is similar. Fix then 𝑥, 𝑧 ∈ H and 𝜀 > 0. Let 𝛿 ··= 𝜀

∥𝑧∥ . If
𝑦 ∈ H is so that ∥𝑥 − 𝑦∥ < 𝛿, the Cauchy-Schwarz inequality yields

|⟨𝑥, 𝑧⟩ − ⟨𝑦, 𝑧⟩| = |⟨𝑥 − 𝑦, 𝑧⟩| ≤ ∥𝑥 − 𝑦∥∥𝑧∥ < 𝛿∥𝑧∥ = 𝜀

and thus 𝑥 ↦−→ ⟨𝑥, 𝑧⟩ is continuous, for all 𝑧 ∈ H .
For the norm, fix 𝑥 ∈ H and 𝜀 > 0. It is enough to take 𝛿 ··= 𝜀, because if ∥𝑥−𝑦∥ < 𝛿,

then
|∥𝑥∥ − ∥𝑦∥| ≤ ∥𝑥 − 𝑦∥ < 𝛿 = 𝜀.

Exercise 1.27. Let 𝐴 ∈ B(𝑋) and 𝑋 be a Banach space. Prove that if 𝜆 ∈ 𝜌(𝐴),
then (𝐴 − 𝜆𝐼)−1 is defined on the whole space 𝑋 . Conclude that when 𝑋 is Banach,
𝜆 ∈ 𝜌(𝐴) if and only if 𝐴 − 𝜆𝐼 is a bijective bounded operator.

Solution. By assumption 𝜆 ∈ 𝜌(𝐴) so Im(𝐴−𝜆𝐼) is dense in 𝑋 . It suffices to prove
it is also closed. To this aim, we appeal the next lemma:

Lemma. Let 𝑋 be a Banach space and let 𝐴 ∈ B(𝑋). Assume there exists 𝐶 > 0
so that ∥𝐴𝑢∥ ≥ 𝐶∥𝑢∥ for any 𝑢 ∈ 𝑋 . Then Im(𝐴) is closed in 𝑋 .

Proof of the lemma. Let (𝐴𝑢𝑛)𝑛∈ℕ ⊂ Im(𝐴) be a sequence converging to 𝑣 ∈ 𝑋 . In
particular, (𝐴𝑢𝑛)𝑛∈ℕ is Cauchy in 𝑋 , and since

∥𝑢𝑛 − 𝑢𝑚∥ ≤ 1
𝐶
∥𝐴𝑢𝑛 − 𝐴𝑚∥

for any 𝑛, 𝑚 ∈ ℕ, we see that (𝑢𝑛)𝑛∈ℕ is also Cauchy in 𝑋 . As 𝑋 is complete, it has a
limit, that we call 𝑢. From the boundedness of 𝐴, it follows that

𝑣 = lim
𝑛→∞

𝐴𝑢𝑛 = 𝐴( lim
𝑛→∞

𝑢𝑛) = 𝐴𝑢

and 𝑣 ∈ Im(𝐴), which is therefore closed in 𝑋 . □
We can now finish the exercise. Indeed, as 𝜆 ∈ 𝜌(𝐴), (𝐴 − 𝜆𝐼)−1 is bounded on its

domain, whence

∥𝑢∥ = ∥(𝐴 − 𝜆𝐼)−1(𝐴 − 𝜆𝐼)𝑢∥ ≤ ∥(𝐴 − 𝜆𝐼)−1∥∥(𝐴 − 𝜆𝐼)𝑢∥

for all 𝑢 ∈ 𝑋 . This means 𝐴 − 𝜆𝐼 satisfies the hypothesis of the lemma with 𝐶 ··=
1

∥(𝐴−𝜆𝐼)−1∥ , and thus 𝐴−𝜆𝐼 has closed range, which means (𝐴−𝜆𝐼)−1 is actually defined
on the whole 𝑋 .

The second claim immediately follows.
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Exercise 1.28. Let 𝑋 be a Banach space, 𝜆 ∈ ℂ, and assume there is a sequence
(𝑢𝑛)𝑛∈ℕ ⊂ 𝑋 so that ∥𝑢𝑛∥ = 1 and 𝐴𝑢𝑛 − 𝜆𝑢𝑛 −→ 0 as 𝑛 −→ ∞. Prove that 𝜆 ∈ 𝜎(𝐴).

Solution. If towards a contradiction we assume that 𝜆 ∈ 𝜌(𝐴), then 𝐴 − 𝜆𝐼 is a
bijective bounded operator with bounded inverse, and this implies

1 = ∥𝑢𝑛∥ ≤ ∥(𝐴 − 𝜆𝐼)−1∥∥𝐴𝑢𝑛 − 𝜆𝑢𝑛∥ −→ 0

as 𝑛→ ∞, which is excluded. Thus 𝜆 ∈ 𝜎(𝐴).

Exercise 1.38. Show that (𝑉⊥)⊥ = 𝑉 for any subspace 𝑉 ⊂ H . Next, prove that
𝑉⊥ = 𝑉

⊥
for any subspace 𝑉 ⊂ H .

Solution. First, we note that (𝑉⊥)⊥ is a closed subset that contains𝑉 . This already
implies that (𝑉⊥)⊥ ⊃ 𝑉 . Conversely, let 𝑣 ∈ (𝑉⊥)⊥. According to the orthogonal
decomposition theorem, we have a splitting

H = 𝑉 ⊕ 𝑉⊥

and we can write 𝑣 = 𝑣1 + 𝑣2, 𝑣1 ∈ 𝑉 , 𝑣2 ∈ 𝑉⊥
. Since 𝑉 ⊂ 𝑉 , it follows that 𝑉

⊥ ⊂ 𝑉⊥,
and in particular 𝑣 is orthogonal to 𝑉

⊥
. Hence ⟨𝑣, 𝑣2⟩ = 0, and we get

0 = ⟨𝑣, 𝑣2⟩ = ⟨𝑣1 + 𝑣2, 𝑣2⟩ = ⟨𝑣1, 𝑣2⟩ + ⟨𝑣2, 𝑣2⟩ = ∥𝑣2∥2

since ⟨𝑣1, 𝑣2⟩ = 0. Thus 𝑣2 = 0, meaning that 𝑣 = 𝑣1 ∈ 𝑉 . This proves (𝑉⊥)⊥ ⊂ 𝑉 .
For the second equality, we first note that as 𝑉 ⊂ 𝑉 , we already have 𝑉

⊥ ⊂ 𝑉⊥. For
the reverse inclusion, let 𝑣 ∈ 𝑉⊥, Fix also 𝑥 ∈ 𝑉 , and choose (𝑥𝑛)𝑛∈ℕ ⊂ 𝑉 a sequence
converging to 𝑥. As 𝑥𝑛 ∈ 𝑉 and 𝑣 ∈ 𝑉⊥ for all 𝑛 ∈ ℕ, it follows that ⟨𝑥𝑛, 𝑣⟩ = 0 for all
𝑛 ∈ ℕ, and the continuity of the inner product now leads to

⟨𝑣, 𝑥⟩ = lim
𝑛→∞

⟨𝑥𝑛, 𝑣⟩ = 0.

Thus 𝑣 ∈ 𝑉⊥
, and this establishes the inclusion 𝑉⊥ ⊂ 𝑉⊥

.

Exercise 1.40. Define the left and the right shift 𝑆,𝑇 : ℓ 2 −→ ℓ 2 by (𝑆𝑢)𝑛 ··= 𝑢𝑛+1
and (𝑇𝑢)1 ··= 0, (𝑇𝑢)𝑛 ··= 𝑢𝑛−1, 𝑛 ≥ 1.
Show that 𝑆 and 𝑇 are bounded, and compute ∥𝑆∥, ∥𝑇 ∥. Determine 𝑆∗, 𝑇∗, and find
𝜎𝑝(𝑆),𝜎𝑐(𝑆),𝜎𝑟 (𝑆),𝜎𝑝(𝑇),𝜎𝑐(𝑇),𝜎𝑟 (𝑇).

Solution. First of all if 𝑢 ∈ ℓ 2 we have

∥𝑆𝑢∥2
2 =

∑︁
𝑛≥1

| (𝑆𝑢)𝑛 |2 =
∑︁
𝑛≥1

|𝑢𝑛+1 |2 = ∥𝑢∥2
2 − |𝑢1 |2 ≤ ∥𝑢∥2

2

so that ∥𝑆∥ ≤ 1. Moreover this inequality is an equality if 𝑢1 = 0, whence in fact
∥𝑆∥ = 1. The same reasoning gives ∥𝑇 ∥ = 1. Next, let 𝑢, 𝑣 ∈ ℓ 2. Since

⟨𝑆𝑢, 𝑣⟩ =
∑︁
𝑛≥1

(𝑆𝑢)𝑛𝑣𝑛
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=
∑︁
𝑛≥1

𝑢𝑛+1𝑣𝑛

=
∑︁
𝑛≥2

𝑢𝑛𝑣𝑛−1

=
∑︁
𝑛≥1

𝑢𝑛(𝑇𝑣)𝑛

= ⟨𝑢,𝑇𝑣⟩

we see that 𝑆∗ = 𝑇. It also follows that 𝑇∗ = (𝑆∗)∗ = 𝑆. We now turn to finding
spectrums of 𝑆 and 𝑇. Let 𝑢 ∈ ℓ 2 and 𝜆 ∈ ℂ. Then

𝑆𝑢 = 𝜆𝑢⇐⇒ ∀𝑛 ≥ 1, 𝑢𝑛+1 = 𝜆𝑢𝑛

which inductively provides 𝑢𝑛 = 𝜆𝑛−1𝑢1, 𝑛 ∈ ℕ. As 𝑢 ∈ ℓ 2, we must have
∑
𝑛≥1 |𝑢𝑛 |2 <

∞, i.e.
|𝑢1 |2

∑︁
𝑛≥1

|𝜆 |2(𝑛−1) < ∞

which implies |𝜆 | < 1. Conversely, if |𝜆 | < 1, then 𝜆 is an eigenvalue of 𝑆, because for
instance 𝑢 = (1,𝜆,𝜆2, . . . ) ∈ ℓ 2 verifies 𝑆𝑢 = 𝜆𝑢. This establishes that

𝜎𝑝(𝑆) = {𝜆 ∈ ℂ : |𝜆 | < 1}

is the open unit disk in the complex plane. By a result from the course, 𝜎(𝑆) must
contain the closure of the open unit disk, which is the closed unit disk. On the other
hand, each 𝜆 ∈ 𝜎(𝑆) satisfies |𝜆 | ≤ ∥𝑆∥ = 1, so 𝜎(𝑆) is contained in the closed unit
disk. Hence

𝜎(𝑆) = {𝜆 ∈ ℂ : |𝜆 | ≤ 1}.
As also 𝜎𝑐(𝑆) ∪ 𝜎𝑟 (𝑆) = 𝜎(𝑆) \ 𝜎𝑝(𝑆), we deduce that

𝜎𝑐(𝑆) ∪ 𝜎𝑟 (𝑆) = {𝜆 ∈ ℂ : |𝜆 | = 1} = 𝕊1

is the boundary of the unit disk. Now let’s turn to 𝜎𝑝(𝑆∗) = 𝜎𝑝(𝑇). For 𝜆 ≠ 0, the
equation 𝑇𝑢 = 𝜆𝑢 is equivalent to 0 = 𝜆𝑢1 and 𝑢𝑛−1 = 𝜆𝑢𝑛 for all 𝑛 ≥ 2. Hence 𝑢1 = 0,
and this in turn implies 𝑢2 = 0, 𝑢3 = 0 and in fact 𝑢𝑛 = 0 for all 𝑛 ≥ 1. Thus if 𝜆 ≠ 0,
it is not an eigenvalue. Likewise, 𝜆 = 0 cannot be an eigenvalue, and we have then
𝜎𝑝(𝑇) = ∅. This allows us to determine the residual spectrum of 𝑆, because

𝜎𝑟 (𝑆) = {𝜆 ∈ ℂ : 𝜆 ∉ 𝜎𝑝(𝑆),𝜆 ∈ 𝜎𝑝(𝑆∗)}
= {𝜆 ∈ ℂ : 𝜆 ∉ 𝜎𝑝(𝑆),𝜆 ∈ 𝜎𝑝(𝑇)}.

As 𝜎𝑝(𝑇) is empty, it follows that 𝜎𝑟 (𝑆) = ∅ as well. Henceforth it appears that

𝜎𝑐(𝑆) = {𝜆 ∈ ℂ : |𝜆 | = 1} = 𝕊1.

Likewise, 𝜎𝑟 (𝑇) = {𝜆 ∈ ℂ : |𝜆 | ≤ 1} and 𝜎𝑐(𝑇) = 𝕊1.
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Exercise 1.42. Let H be a complex Hilbert space, and 𝐴 ∈ B(H). Prove that if
⟨𝐴𝑢, 𝑢⟩ = 0 for all 𝑢 ∈ H then 𝐴 = 0.

Solution. Let 𝑣, 𝑤 ∈ H and 𝜆 ∈ ℂ. Then, from the assumption

0 = ⟨𝐴(𝑣 + 𝜆𝑤), 𝑣 + 𝜆𝑤⟩ = 𝜆⟨𝐴𝑤, 𝑣⟩ + 𝜆⟨𝐴𝑣, 𝑤⟩.

For the special value 𝜆 = 1 we get ⟨𝐴𝑤, 𝑣⟩ = −⟨𝐴𝑣, 𝑤⟩ and for the special value 𝜆 = 𝑖,
we end it up with ⟨𝐴𝑤, 𝑣⟩ = ⟨𝐴𝑣, 𝑤⟩. Together these two conditions implies

⟨𝐴𝑣, 𝑤⟩ = 0

for all 𝑣, 𝑤 ∈ H . In particular fixing 𝑣 ∈ H and setting 𝑤 ··= 𝐴𝑣 provides ∥𝐴𝑣∥2 =

⟨𝐴𝑣, 𝐴𝑣⟩ = 0, whence 𝐴𝑣 = 0 for all 𝑣 ∈ H . Thus 𝐴 = 0.
An another way of proceeding is to use the assumption and the polarization identity

given in Exercise 1.45. This immediately yields to ⟨𝐴𝑢, 𝑣⟩ = 0 for all 𝑢, 𝑣 ∈ H , and we
conclude as above.

Lastly, note that it is essential for H to be a complex Hilbert space. For a counter
example in the real case one can consider H = ℝ2 and 𝐴 the rotation by 𝜋

2 . 𝐴 ≠ 0, but
clearly ⟨𝐴𝑢, 𝑢⟩ = 0 for all 𝑢 ∈ ℝ2.

Exercise 1.45. Prove that if H is a pre-Hilbert space, then

⟨𝑢, 𝑣⟩ = 1
4
(∥𝑢 + 𝑣∥2 − ∥𝑢 − 𝑣∥2 + 𝑖∥𝑢 + 𝑖𝑣∥2 − 𝑖∥𝑢 − 𝑖𝑣∥2)

for any 𝑢, 𝑣 ∈ H . Next prove that if 𝐴 is an operator on a Hilbert space H , then

⟨𝐴𝑢, 𝑣⟩ = 1
4
(⟨𝐴(𝑢+𝑣), 𝑢+𝑣⟩− ⟨𝐴(𝑢−𝑣), 𝑢−𝑣⟩+ 𝑖⟨𝐴(𝑢+ 𝑖𝑣), 𝑢+ 𝑖𝑣⟩− 𝑖⟨𝐴(𝑢− 𝑖𝑣), 𝑢− 𝑖𝑣⟩)

then for any 𝑢, 𝑣 ∈ H .

Solution. Expand directly the right-hand side of both equalities.

Exercise 1.46. Show that the subspace S(H) of symmetric operators is closed in
B(H). Show also that if 𝑆, 𝐵 ∈ S(H), then 𝑆𝐵 ∈ S(H) if and only if 𝑆𝐵 = 𝐵𝑆.

Solution. Take a sequence (𝐴𝑛)𝑛∈ℕ ⊂ S(H), and suppose 𝐴𝑛 −→ 𝐴 as 𝑛 → ∞.
Then

∥𝐴 − 𝐴∗∥ = ∥𝐴 − 𝐴𝑛 + 𝐴𝑛 − 𝐴∗∥
≤ ∥𝐴 − 𝐴𝑛∥ + ∥(𝐴𝑛 − 𝐴)∗∥
= 2∥𝐴 − 𝐴𝑛∥

since 𝐴∗
𝑛 = 𝐴𝑛 and since ∥𝑆∗∥ = ∥𝑆∥ for every bounded operator 𝑆. As ∥𝐴− 𝐴𝑛∥ −→ 0

as 𝑛 → ∞, we obtain 𝐴 = 𝐴∗, and 𝐴 is symmetric. This shows that S(H) is closed in
B(H).
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For the next claim, let 𝑆, 𝐵 be two symmetric operators. If 𝑆𝐵 is also symmetric
then 𝑆𝐵 = (𝑆𝐵)∗ = 𝐵∗𝑆∗ = 𝐵𝑆 so 𝐵 commutes with 𝑆. Conversely, if 𝑆𝐵 = 𝐵𝑆, we
get that

𝑆𝐵 = 𝐵𝑆 = 𝐵∗𝑆∗ = (𝑆𝐵)∗

whence 𝑆𝐵 is symmetric, as wanted.

Exercise 1.48. Let 𝐴 ∈ B(H) be normal, i.e. 𝐴𝐴∗ = 𝐴∗𝐴. Prove that 𝐴 is invertible
and has bounded inverse if and only if there exists a constant 𝐶 > 0 so that ∥𝐴𝑢∥ ≥
𝐶∥𝑢∥ for all 𝑢 ∈ H .
Hint : Prove first that 𝐴 is normal if and only if ∥𝐴𝑢∥ = ∥𝐴∗𝑢∥ for any 𝑢 ∈ H . Deduce
that a normal operator is injective if and only if it has dense range.

Solution. We start by proving the following result:
An operator 𝐴 ∈ B(H) is invertible if and only if it has dense range and there

exists 𝐶 > 0 so that ∥𝐴𝑢∥ ≥ 𝐶∥𝑢∥ for all 𝑢 ∈ H .

Proof. =⇒ : If 𝐴 ∈ B(H) is invertible, it has dense range, and

∥𝑢∥ = ∥𝐴−1𝐴𝑢∥ ≤ ∥𝐴−1∥∥𝐴𝑢∥

for any 𝑢 ∈ H , so we set 𝐶 ··= 1
∥𝐴−1∥ and we have the second condition.

⇐= : Conversely, if there is 𝐶 > 0 so that ∥𝐴𝑢∥ ≥ 𝐶∥𝑢∥ for all 𝑢 ∈ H , then 𝐴 has
closed range, as seen in Exercise 1.27. By assumption, Im(𝐴) is also dense, so it follows
that Im(𝐴) = H , and 𝐴 is onto. Note lastly that injectivity is a consequence of the fact
that ∥𝐴𝑢∥ ≥ 𝐶∥𝑢∥, 𝑢 ∈ H . Thus 𝐴 is injective, and then invertible. □

Next, we prove the hint. Observe that

∥𝐴𝑢∥2 − ∥𝐴∗𝑢∥2 = ⟨(𝐴∗𝐴 − 𝐴𝐴∗)𝑢, 𝑢⟩

for all 𝑢 ∈ H . If 𝐴 is normal, the right-hand side vanishes whence ∥𝐴𝑢∥ = ∥𝐴∗𝑢∥ for
all 𝑢 ∈ H .

Conversely, if this condition holds for all 𝑢 ∈ H , we deduce ⟨(𝐴∗𝐴 − 𝐴𝐴∗)𝑢, 𝑢⟩ = 0
for all 𝑢 ∈ H , and Exercise 1.42 provides 𝐴∗𝐴 − 𝐴𝐴∗ = 0. Thus 𝐴 is normal. An
immediate consequence of this caracterization is that

Ker(𝐴) = Ker(𝐴∗)

for normal operators. This implies Ker(𝐴) = Im(𝐴)⊥, and so Ker(𝐴)⊥ = (Im(𝐴)⊥)⊥ =

Im(𝐴) by Exercise 1.38. Appealing the orthogonal decomposition theorem, we get

H = Ker(𝐴) ⊕ Ker(𝐴)⊥ = Ker(𝐴) ⊕ Im(𝐴)

which means exactly that 𝐴 is injective if and only if it has dense range.
We can now finish the exercise. As already seen, if 𝐴 is invertible, setting𝐶 ··= 1

∥𝐴−1∥
guarantees ∥𝐴𝑢∥ ≥ 𝐶∥𝑢∥ for all 𝑢 ∈ H . Conversely this condition ensures injectivity
of 𝐴, which in turn ensures surjectivity of 𝐴 by what we just proved. Hence 𝐴 is
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invertible, and the boundedness of its inverse is a consequence of the open mapping
theorem.

Exercise 1.49. Prove directly that the eigenvalues (if any) of a symmetric operator
𝐴 ∈ B(H) are real.

Solution. If 𝜆 ∈ ℂ is an eigenvalue of 𝐴, then there is 𝑢 ≠ 0 so that 𝐴𝑢 = 𝜆𝑢. We
compute

𝜆⟨𝑢, 𝑢⟩ = ⟨𝜆𝑢, 𝑢⟩ = ⟨𝐴𝑢, 𝑢⟩ = ⟨𝐴𝑢, 𝑢⟩ = 𝜆⟨𝑢, , 𝑢⟩
and dividing through by ⟨𝑢, 𝑢⟩ = ∥𝑢∥2 ≠ 0 leads 𝜆 = 𝜆. Thus 𝜆 ∈ ℝ.

Exercise 1.57. Check that ≤ is a partial order on the class of symmetric operators
on H .

Solution. Let 𝐴, 𝐵,𝐶 ∈ B(H) be symmetric. As the zero operator is positive, we
have 𝐴 ≤ 𝐴, so ≤ is reflexive. If 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐶, then 𝐶 − 𝐵, 𝐵 − 𝐴 are positive. It
follows that

⟨(𝐶 − 𝐴)𝑢, 𝑢⟩ = ⟨(𝐶 − 𝐵)𝑢, 𝑢⟩ + ⟨(𝐵 − 𝐴)𝑢, 𝑢⟩ ≥ 0
for all 𝑢 ∈ H so 𝐶 − 𝐴 is positive, and ≤ is transitive. Lastly, if 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐴, we
have ⟨(𝐵−𝐴)𝑢, 𝑢⟩ ≥ 0 and ⟨(𝐴−𝐵)𝑢, 𝑢⟩ ≤ 0 for all 𝑢 ∈ H . This forces ⟨(𝐴−𝐵)𝑢, 𝑢⟩ = 0
for any 𝑢 ∈ H , and by Exercise 1.42 this implies 𝐴 − 𝐵 = 0, whence 𝐴 = 𝐵. Thus ≤ is
antisymmetric, and we are done.

Exercise 1.59. Deduce from the proof of Theorem 1.47 that if 𝐴 is a positive oper-
ator, then 𝜎(𝐴) ⊂ [0,∞).

Solution. Theorem 1.47 already shows that 𝜎(𝐴) ⊂ ℝ if 𝐴 is symmetric. It thus
remain to exclude negative numbers from the spectrum. Let then 𝜆 < 0. As in the
proof of 1.47, one has

∥(𝐴 − 𝜆𝐼)𝑢∥2 = ∥𝐴𝑢∥2 − 2𝜆⟨𝐴𝑢, 𝑢⟩ + 𝜆2∥𝑢∥2

for all 𝑢 ∈ H . As now 𝐴 is positive, ⟨𝐴𝑢, 𝑢⟩ ≥ 0, so −2𝜆⟨𝐴𝑢, 𝑢⟩ ≥ 0 for all 𝑢 ∈ H . We
then deduce that ∥(𝐴 − 𝜆𝐼)𝑢∥2 ≥ 𝜆2∥𝑢∥2 for all 𝑢 ∈ H , and thus 𝜆 ∈ 𝜌(𝐴). It follows
that 𝜎(𝐴) ⊂ [0,∞).

Exercise 1.64. Show that the above result is false if 𝑃 and 𝑄 do not commute.

Solution. Consider two operators 𝑃 and 𝑄 on ℂ2 given by

𝑃 =

(
1 0
0 0

)
, 𝑄 =

(
1 1
1 1

)
.

These two operators are positive, but their product 𝑃𝑄 =

(
1 1
0 0

)
is not positive, as it

is even not self-adjoint.

Exercise 1.67. Prove that an operator 𝑃 ∈ B(H) is positive if and only if there
exists 𝐴 ∈ B(H) so that 𝑃 = 𝐴∗𝐴.
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Solution. If 𝑃 ∈ B(H) is positive, it suffices to set 𝐴 ··=
√
𝑃 to get 𝐴∗𝐴 = 𝑃.

Conversely, if 𝑃 = 𝐴∗𝐴, then

⟨𝑃𝑢, 𝑢⟩ = ⟨𝐴∗𝐴𝑢, 𝑢⟩ = ⟨𝐴𝑢, 𝐴𝑈⟩ = ∥𝐴𝑢∥2 ≥ 0

for all 𝑢 ∈ H , whence 𝑃 is positive.

Exercise 1.68. Let 𝐴 : ℓ 2 −→ ℓ 2 be the double right shift, defined by (𝐴𝑢)1 =

(𝐴𝑢)2 ··= 0 and (𝐴𝑢)𝑛 ··= 𝑢𝑛−2, 𝑛 ≥ 3.
Show that 𝐴 is bounded and compute ∥𝐴∥. Determine 𝐴∗, and find 𝜎𝑝(𝐴), 𝜎𝑐(𝐴) and
𝜎𝑟 (𝐴). Is 𝐴 positive? Find 𝐵 : ℓ 2 −→ ℓ 2 so that 𝐴 = 𝐵2. What can we conclude?

Solution. First of all, we have

∥𝐴𝑢∥2
2 =

∑︁
𝑛≥1

| (𝐴𝑢)𝑛 |2 =
∑︁
𝑛≥3

|𝑢𝑛−2 |2 = ∥𝑢∥2
2

for all 𝑢 ∈ ℓ 2, so 𝐴 is bounded and ∥𝐴∥ = 1. It is easy to check that the adjoint of 𝐴
is the double left shift 𝐴∗ : ℓ 2 −→ ℓ 2, defined by (𝐴𝑢)𝑛 ··= 𝑢𝑛+2, 𝑛 ≥ 1, for any 𝑢 ∈ ℓ 2.
The same reasoning as in Exercise 1.40 shows that

𝜎𝑝(𝐴) = {𝜆 ∈ ℂ : |𝜆 | < 1}
𝜎𝑐(𝐴) = 𝕊1, 𝜎𝑟 (𝐴) = ∅

and hence 𝜎(𝐴) = {𝜆 ∈ ℂ : |𝜆 | = 1}. To conclude, 𝐴 is not positive, as it is not
self-adjoint, but 𝐴 = 𝐵2 where 𝐵 : ℓ 2 −→ ℓ 2 is the right shift. This shows that being
positive is only a sufficient condition to have a square root, and is not necessary.

2. Spectral theorem I

Exercise 2.6. Let 𝑆 ∈ B(H) be symmetric, and (𝐸𝜆)𝜆∈ℝ be a corresponding spec-
tral family. Prove that for any 𝑃 ∈ ℝ[𝑋] and 𝑢, 𝑣 ∈ H , we have

⟨𝑃(𝑆)𝑢, 𝑣⟩ =
∫ 𝑀+𝜀

𝑚

𝑃(𝜆) d⟨𝐸𝜆𝑢, 𝑣⟩

where the right-hand side is the Riemann-Stieltjes integral of 𝑃with respect to𝜙(𝜆) ··=
⟨𝐸𝜆𝑢, 𝑣⟩.

Solution. It is enough to prove the identity in the case 𝑣 = 𝑢, and the general case
follows from the polarization identity (Exercise 1.45).

Let 𝑢 ∈ H . First observe that the right hand side is well-defined, since 𝜆 ↦−→
⟨𝐸𝜆𝑢, 𝑢⟩ is of bounded variations. Indeed, if 𝑚, 𝑀 are the lower and upper bounds of
𝑆 and if

𝑚 = 𝜆0 < 𝜆1 < · · · < 𝜆𝑛 = 𝑀 + 𝜀

7
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is an arbitrary partition of [𝑚, 𝑀 + 𝜀], then
𝑛∑︁
𝑘=1

|⟨𝐸𝜆𝑘𝑢, 𝑢⟩ − ⟨𝐸𝜆𝑘−1𝑢, 𝑢⟩| =
𝑛∑︁
𝑘=1

⟨𝐸𝜆𝑘𝑢, 𝑢⟩ − ⟨𝐸𝜆𝑘−1𝑢, 𝑢⟩

=

〈 𝑛∑︁
𝑘=1

(𝐸𝜆𝑘 − 𝐸𝜆𝑘−1)𝑢, 𝑢
〉

= ⟨(𝐸𝑀+𝜀 − 𝐸𝑚)𝑢, 𝑢⟩
= ∥𝑢∥2

since (𝐸𝜆)𝜆∈ℝ is increasing and 𝐸𝑀+𝜀 = IdH , 𝐸𝑚 = 0. Now, fix a sequence of partitions
(Π𝑙)𝑙∈ℕ with |Π𝑙 | → 0 as 𝑙→ 0. Write explicitly

𝑚 = 𝜆𝑙0 < 𝜆𝑙1 < · · · < 𝜆𝑙𝑛𝑙 = 𝑀 + 𝜀

the partition Π𝑙, to get

⟨𝑃(𝑆)𝑢, 𝑢⟩ =
〈

lim
𝑙→∞

𝑛𝑙∑︁
𝑘=1

𝑃(𝜆𝑙
𝑘
) (𝐸𝜆𝑙

𝑘
− 𝐸𝜆𝑙

𝑘−1
)𝑢, 𝑢

〉
= lim
𝑙→∞

𝑛𝑙∑︁
𝑘=1

𝑃(𝜆𝑙
𝑘
)⟨(𝐸𝜆𝑙

𝑘
− 𝐸𝜆𝑙

𝑘−1
)𝑢, 𝑢⟩

= lim
𝑙→∞

𝑛𝑙∑︁
𝑘=1

𝑃(𝜆𝑙
𝑘
) (⟨𝐸𝜆𝑙

𝑘
𝑢, 𝑢⟩ − ⟨𝐸𝜆𝑙

𝑘−1
𝑢, 𝑢⟩)

=

∫ 𝑀+𝜀

𝑚

𝑃(𝜆) d⟨𝐸𝜆𝑢, 𝑢⟩

as claimed.

3. The spectral theorem for self-adjoint operators

Exercise 3.9. Let𝜙 ∈ 𝐿∞(ℝ) and consider the multiplication operator𝑇 : 𝐿2(ℝ) −→
𝐿2(ℝ) defined as (𝑇𝑢) (𝑥) ··= 𝜙(𝑥)𝑢(𝑥), 𝑥 ∈ ℝ. Show that 𝑇 is bounded and compute
its norm. Find 𝑇∗, and determine under which condition 𝑇 is symmetric.

Now, suppose that lim
𝑥→+∞

|𝜙(𝑥) | = +∞. Show that 𝑇 is unbounded, and find its
domain. Find 𝑇∗.

Solution. If 𝜙 ∈ 𝐿∞(ℝ), we get that

∥𝑇𝑢∥2
2 =

∫
𝑅

|𝜙(𝑥) |2 |𝑢(𝑥) |2 d𝑥 ≤ ∥𝜙∥2
∞∥𝑢∥2

2
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for all 𝑢 ∈ 𝐿2(ℝ), whence 𝑇 is bounded and ∥𝑇 ∥ ≤ ∥𝜙∥∞. Now let 𝜀 > 0. By definition
of ∥𝜙∥∞, we may find a subset 𝐸 ⊂ ℝ of Lebesgue measure |𝐸 | > 0 so that |𝜙(𝑥) | ≥
∥𝜙∥∞ − 𝜀. Set then 𝑢 ··= 1√

|𝐸 |
1𝐸, and observe that

∥𝑇𝑢∥2
2 =

∫
ℝ

|𝜙(𝑥) |2 |𝑢(𝑥) |2 d𝑥 ≥ (∥𝜙∥∞ − 𝜀)2 = (∥𝜙∥∞ − 𝜀)2∥𝑢∥2
2

which in turn implies ∥𝑇𝑢∥ ≥ ∥𝜙∥∞ − 𝜀. As 𝜀 > 0 is arbitrary, we get ∥𝑇 ∥ ≥ ∥𝜙∥∞,
and we conclude that ∥𝑇 ∥ = ∥𝜙∥∞. To continue, the computation

⟨𝑇𝑢, 𝑣⟩ =
∫
𝑅

𝜙(𝑥)𝑢(𝑥)𝑣(𝑥) d𝑥 =
∫
𝑅

𝑢(𝑥)𝜙(𝑥)𝑣(𝑥) d𝑥

valid for all 𝑢, 𝑣 ∈ 𝐿2(ℝ), shows that the adjoint of𝑇 is given by𝑇∗ : 𝐿2(ℝ) −→ 𝐿2(ℝ),
(𝑇∗𝑢) (𝑥) ··= 𝜙(𝑥)𝑢(𝑥). Then, it follows that 𝑇 is symmetric if and only if 𝜙(𝑥) = 𝜙(𝑥)
for all 𝑥 ∈ ℝ, i.e. 𝜙 is ℝ−valued.

Let us now suppose lim
𝑥→+∞

|𝜙(𝑥) | = +∞. The domain of 𝑇 is then

D𝑇 ··=
{
𝑢 ∈ 𝐿2(ℝ) :

∫
ℝ

|𝜙(𝑥) |2 |𝑢(𝑥) |2 d𝑥 < ∞
}
.

Now let 𝑘 ∈ ℕ. By assumption, we can find a subset 𝐸𝑘 ⊂ ℝ of Lebesgue measure
|𝐸𝑘 | > 0 so that |𝜑(𝑥) | ≥ 𝑘 for a.e. 𝑥 ∈ 𝐸𝑘. Let then 𝑢𝑘 ··= 1√

|𝐸𝑘 |
1𝐸𝑘 to get

∥𝑇𝑢𝑘∥2
2 =

∫
ℝ

|𝜙(𝑥) |2 |𝑢𝑘 |2 d𝑥 ≥ 𝑘2 = 𝑘2∥𝑢𝑘∥2
2

for every 𝑘 ∈ ℕ. Hence ∥𝑇 ∥ ≥ 𝑘 for all 𝑘 ∈ ℕ, and 𝑇 is unbounded.
We now claim that D𝑇∗ = D𝑇 and that 𝑇∗𝑣 = 𝜙𝑣 for all 𝑣 ∈ D𝑇∗. First of all,

if 𝑣 ∈ D𝑇 , the mapping 𝑢 −→ ⟨𝑇𝑢, 𝑣⟩ is bounded on D𝑇 , by the Cauchy-Schwarz
inequality. This already proves 𝑣 ∈ D𝑇∗, and additionally

⟨𝑇𝑢, 𝑣⟩ =
∫
ℝ

𝜙(𝑥)𝑢(𝑥)𝑣(𝑥) d𝑥 =
∫
ℝ

𝑢(𝑥)𝜙(𝑥)𝑣(𝑥) d𝑥 = ⟨𝑢,𝜙𝑣⟩

whence 𝑇∗𝑣 = 𝜙𝑣 on 𝐷𝑇 . It remains to prove D𝑇∗ ⊂ D𝑇 . Let then 𝑣 ∈ D𝑇∗, so that

⟨𝑇𝑢, 𝑣⟩ = ⟨𝑢,𝑇∗𝑣⟩

for all 𝑢 ∈ D𝑇 . This last equality can be written as∫
ℝ

𝑢(𝑥)𝜙(𝑥)𝑣(𝑥) d𝑥 =
∫
ℝ

𝑢(𝑥)𝑇∗𝑣(𝑥) d𝑥

for all 𝑢 ∈ D𝑇 . Thus ⟨𝑢,𝜙𝑣 − 𝑇∗𝑣⟩ = 0 for all 𝑢 ∈ D𝑇 and as the latter is dense in
𝐿2(ℝ), it follows that 𝑇∗𝑣 = 𝜙𝑣 and D𝑇∗ ⊂ D𝑇 .
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Exercise 3.11. Show that𝑈,𝑉 are both bounded, unitary and satisfy𝑈2 = IdH⊕H =

−𝑉2. Show that 𝑈 preserves the inner product on H ⊕ H , and that for any subspace
𝑋 ⊂ H ⊕ H , we have 𝑉 (𝑋⊥) = 𝑉 (𝑋)⊥.

Solution. That 𝑈,𝑉 are bounded and satisfy 𝑈2 = IdH⊕H = −𝑉2 follow from the
definition. We prove that𝑉 is unitary, and the proof for𝑈 is similar. Let (𝑢, 𝑣), (𝑧, 𝑤) ∈
H ⊕ H , and write

⟨𝑉 (𝑢, 𝑣), (𝑧, 𝑤)⟩ = ⟨(𝑣,−𝑢), (𝑧, 𝑤)⟩
= ⟨𝑣, 𝑧⟩ − ⟨𝑢, 𝑤⟩
= ⟨(𝑢, 𝑣), (−𝑤, 𝑧)⟩

to deduce that 𝑉∗(𝑢, 𝑣) := (−𝑣, 𝑢), 𝑢, 𝑣 ∈ H , is the adjoint of 𝑉 . Hence 𝑉∗ = −𝑉 = 𝑉−1,
and 𝑉 is unitary. To continue,𝑈 clearly preserves the inner product of H ⊕H . Lastly,
fix 𝑋 ⊂ H ⊕H . First let (𝑢, 𝑣) ∈ 𝑉 (𝑋⊥), and write (𝑢, 𝑣) = 𝑉 (𝑧, 𝑤) = (𝑤,−𝑧) for some
(𝑧, 𝑤) ∈ 𝑋⊥. Now if (𝑠, 𝑡) ∈ 𝑋 , then

⟨(𝑢, 𝑣), 𝑉 (𝑠, 𝑡)⟩ = ⟨(𝑤,−𝑧), (𝑡,−𝑠)⟩ = ⟨𝑤, 𝑡⟩ + ⟨𝑧, 𝑠⟩ = ⟨(𝑧, 𝑤), (𝑠, 𝑡)⟩ = 0

as (𝑠, 𝑡) ∈ 𝑋 and (𝑧, 𝑤) ∈ 𝑋⊥. This proves that 𝑉 (𝑋⊥) ⊂ 𝑉 (𝑋)⊥, and the reverse
inclusion is similar.

Exercise 3.19. Let 𝑇 : 𝐷𝑇 −→ H be densely defined.
(i) Show that 𝑇 is closable if and only if 𝑇∗ is densely defined, and that in this case
𝑇 = 𝑇∗∗.
(ii) Show that if 𝑇 is densely defined and closable, then (𝑇)∗ = 𝑇∗.

Solution. (i) Suppose first that 𝑇 is closable, i.e. there is an operator 𝑆 with𝑇 ⊂ 𝑆
and 𝐺𝑆 = 𝐺𝑇 . Then 𝑆∗ ⊂ 𝑇∗ and in particular D𝑆∗ ⊂ D𝑇∗. Now 𝑆 is densely defined
(because its domain contains D𝑇 which is already dense by assumption) and closed,
so Theorem 3.13 ensures that D𝑆∗ is dense, and thus D𝑇∗ is dense as well. Hence 𝑇∗

is densely defined.
Conversely, suppose𝑇∗ is densely defined. This guarantees that𝑇∗∗ ··= (𝑇∗)∗ exists.

Now using Lemma 3.12 we compute that

𝐺𝑇∗∗ = 𝐺(𝑇∗)∗ = 𝑉 (𝐺𝑇∗)⊥ = 𝑉 (𝐺𝑇∗)⊥ = 𝑉 (𝐺⊥
𝑇∗) = 𝑉 (𝑉 (𝐺𝑇)) = −𝐺𝑇 = 𝐺𝑇

using that the graph of𝑇∗ is closed (by Proposition 3.8), that𝑉 preserves orthogonality,
that 𝑉2 = −IdH⊕H (Exercise 3.11) and that 𝐺𝑇 is a subspace. Hence 𝑇 is closable and
𝑇 = 𝑇∗∗.
(ii) We directly compute that

𝐺(𝑇)∗ = 𝑉 (𝐺𝑇)
⊥ = 𝑉 (𝐺

𝑇
)⊥ = 𝑉 (𝐺𝑇)⊥ = 𝐺𝑇∗

using Lemma 3.12 and that 𝑇 is closed. Hence (𝑇)∗ = 𝑇∗ as claimed.
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Exercise 3.24. Let H = 𝐿2(ℝ), and 𝐻 : D𝐻 −→ H , D𝐻 ··= 𝐶∞
0 (ℝ), 𝐻 ··= − d2

d𝑥2 .
(i) Prove that 𝐻 is symmetric.
(ii) Prove that 𝐻∗ = − d2

d𝑥2 on the domain

D𝐻∗ = {𝑣 ∈ H : 𝑣 ∈ 𝐶1(ℝ), 𝑣′ ∈ 𝐴𝐶[𝑎, 𝑏] for any −∞ < 𝑎 < 𝑏 < +∞, 𝑣′′ ∈ 𝐿2(ℝ)}.

Hint: To prove the inclusion of D𝐻∗ into the right-hand side, think to Du-Bois Rey-
mond’s lemma.
(iii) Is 𝐻 self-adjoint? essentially self-adjoint?

Solution. (i) DH is dense in H = 𝐿2(ℝ), and for all 𝑢, 𝑣 ∈ D𝐻 one has

⟨𝐻𝑢, 𝑣⟩ =
∫
ℝ

−𝑢′′(𝑥)𝑣(𝑥) d𝑥 =
∫
ℝ

𝑢(𝑥)−𝑣′′(𝑥) d𝑥 = ⟨𝑢, 𝐻𝑣⟩

integrating by parts twice and using that 𝑢, 𝑣 vanish at infinity. By Lemma 3.16, 𝐻 is
symmetric.
(ii) Let

D ··= {𝑣 ∈ H : 𝑣 ∈ 𝐶1(ℝ), 𝑣′ ∈ 𝐴𝐶[𝑎, 𝑏] for any −∞ < 𝑎 < 𝑏 < +∞, 𝑣′′ ∈ 𝐿2(ℝ)}.

First, let 𝑣 ∈ D. Then

⟨𝐻𝑢, 𝑣⟩ =
∫
ℝ

𝑢(𝑥)−𝑣′′(𝑥) d𝑥 = ⟨𝑢,−𝑣′′⟩

for any 𝑢 ∈ D𝐻, whence |⟨𝐻𝑢, 𝑣⟩| ≤ ∥𝑢∥∥𝑣′′∥ for any 𝑢 ∈ D𝐻 by Cauchy-Schwarz.
Thus 𝑣 ∈ D𝐻∗ and as

⟨𝑢, 𝐻∗𝑣⟩ = ⟨𝐻𝑢, 𝑣⟩ = ⟨𝑢,−𝑣′′⟩
for all 𝑢 ∈ D𝐻 which is dense, we must have 𝐻∗𝑣 = −𝑣′′ on D. Hence D ⊂ D𝐻∗ and
𝐻∗ = − d2

d𝑥2 on D.
Conversely, let 𝑣 ∈ D𝐻∗. Then the function

𝜑(𝑥) ··=
∫ 𝑥

0

∫ 𝑦

0
𝐻∗𝑣(𝑧) d𝑧d𝑦

is in 𝐶1(ℝ), in 𝐴𝐶[0, 1] and 𝜑′′ = 𝐻∗𝑣 ∈ 𝐿2(ℝ). In other words, 𝜑 ∈ D. Moreover, for
any 𝑢 ∈ D𝐻 we also have∫

ℝ

−𝑢′′(𝑥)𝑣(𝑥) d𝑥 = ⟨𝐻𝑢, 𝑣⟩ = ⟨𝑢, 𝐻∗𝑣⟩ = ⟨𝑢,𝜑′′⟩ =
∫
ℝ

𝑢′′(𝑥)𝜑(𝑥) d𝑥

and it follows that ∫
ℝ

𝑢′′(𝑥)𝜑(𝑥) + 𝑣(𝑥) d𝑥 = 0

for all 𝑢 ∈ D𝐻. By the Du-Bois Reymond lemma, there exist 𝑐0, 𝑐1 ∈ ℂ so that 𝑣(𝑥) =
𝜑(𝑥) + 𝑐1𝑥 + 𝑐0, and thus 𝑣 ∈ D as well. Hence, D𝐻∗ ⊂ D and we are done.
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(iii) 𝐻 cannot be self-adjoint, as its domain and the domain of its adjoint do not coin-
cide. However, it is in fact essentially self-adjoint. To prove this, we make use of Theo-
rem 3.22, and it is enough to prove that Im(𝐻 + 𝑖𝐼), Im(𝐻 − 𝑖𝐼) are dense in H . Equiv-
alently, we show that Ker(𝐻 + 𝑖𝐼) and Ker(𝐻 − 𝑖𝐼) reduce to {0}. If 𝑢 ∈ Ker(𝐻 + 𝑖𝐼),
then

𝑢′′ = 𝑖𝑢.

Solving this differential equation provides two independent solutions

𝑢1(𝑥) = exp
(
1 + 𝑖
√

2
𝑥

)
, 𝑢1(𝑥) = exp

(
− 1 + 𝑖

√
2
𝑥

)
.

Since neither belong to 𝐿2(ℝ), we conclude indeed that Ker(𝐻+𝑖𝐼) = {0}, and similarly
for the second kernel. Thus 𝐻 is essentially self-adjoint.

4. Applications to quantum mechanics

Exercise 4.1. Check that 𝑈 ∈ B(H) is unitary if and only if 𝑈 is surjective and
⟨𝑈𝑢,𝑈𝑣⟩ = ⟨𝑢, 𝑣⟩ for all 𝑢, 𝑣 ∈ H . Is the surjectivity assumption really necessary?
Deduce that a unitary operator has norm 1.

Solution. First, if𝑈 is unitary, then in particular𝑈∗𝑈 = IdH and thus

⟨𝑈𝑢,𝑈𝑣⟩ − ⟨𝑢, 𝑣⟩ = ⟨𝑈∗𝑈𝑢, 𝑣⟩ − ⟨𝑢, 𝑣⟩ = ⟨(𝑈∗𝑈 − IdH )𝑢, 𝑣⟩ = 0

for any 𝑢, 𝑣 ∈ H . We deduce that ⟨𝑈𝑢,𝑈𝑣⟩ = ⟨𝑢, 𝑣⟩ for all 𝑢, 𝑣 ∈ H .
Conversely, note that preserving the inner product forces 𝑈 to be injective, and

thus invertible, and additionally

⟨(𝑈∗𝑈 − Id)𝑢, 𝑣⟩ = ⟨𝑈𝑢,𝑈𝑣⟩ − ⟨𝑢, 𝑣⟩ = 0

for all 𝑢, 𝑣 ∈ H , whence𝑈∗𝑈 = IdH by Exercise 1.42. Next observe that

𝑈∗(𝑈𝑈∗)𝑈 = (𝑈∗𝑈) (𝑈∗𝑈) = IdH = 𝑈∗𝑈

and multiplying from the left by (𝑈∗)−1 and from the right by𝑈−1 provides𝑈𝑈∗ = IdH .
It follows that𝑈 is unitary, and also easily that𝑈 has norm 1.

The surjectivity assumption is crucial. Indeed the right shift 𝐴 on ℓ 2(ℕ) preserves
the inner product, but is not surjective, as any sequence whose first coordinate is not 0
does not lie in its image. On the other hand, it is not a unitary operator as its adjoint
𝐴∗ is the left shift and that the composite 𝐴𝐴∗ is not the identity on ℓ 2(ℕ).

Exercise 4.3. Show that a one-parameter unitary group (𝑈𝑡)𝑡∈ℝ is strongly con-
tinuous if and only if it is weakly continuous.

Solution. Using the continuity of the inner product in the first variable (Exer-
cise 1.17), it follows easily that a strongly continuous one-parameter unitary group is
weakly continuous.
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Let us show the converse. Suppose 𝑡𝑛 → 𝑡∗, where (𝑡𝑛)𝑛∈ℕ ⊂ ℝ and 𝑡∗ ∈ ℝ. Let
𝑢 ∈ H , and write

∥𝑈𝑡𝑛𝑢 −𝑈𝑡∗𝑢∥2 = ∥𝑈𝑡𝑛𝑢∥2 + ∥𝑈𝑡∗𝑢∥2 − 2Re⟨𝑈𝑡𝑛𝑢,𝑈𝑡∗𝑢⟩ = 2∥𝑢∥2 − 2Re⟨𝑈𝑡𝑛𝑢,𝑈𝑡∗𝑢⟩

using that𝑈𝑡∗,𝑈𝑡𝑛, 𝑛 ∈ ℕ, are unitary. As 𝑡 ↦−→ ⟨𝑈𝑡𝑢,𝑈𝑡∗𝑢⟩ is continuous from ℝ to ℂ
by assumption, ⟨𝑈𝑡𝑛𝑢,𝑈𝑡∗𝑢⟩ converges to ∥𝑈𝑡∗𝑢∥2 = ∥𝑢∥2 as 𝑛→ ∞. Henceforth

lim
𝑛→∞

∥𝑈𝑡𝑛𝑢 −𝑈𝑡∗𝑢∥2 = 2∥𝑢∥2 − 2∥𝑢∥2 = 0

and thus 𝑈𝑡𝑛𝑢 → 𝑈𝑡∗𝑢 as 𝑛 → ∞. This shows that 𝑡 ↦−→ 𝑈𝑡𝑢 is continuous, and thus
(𝑈𝑡)𝑡∈ℝ is strongly continuous.

Exercise 4.4. For 𝑎 ∈ ℝ, let 𝑈𝑎 : 𝐿2(ℝ) −→ 𝐿2(ℝ), (𝑈𝑎 𝑓 ) (𝑥) ··= 𝑓 (𝑥 − 𝑎). Show
that (𝑈𝑎)𝑎∈ℝ is a strongly continuous one-parameter unitary group.

Solution. Clearly,𝑈0 = Id𝐿2 (ℝ) and if 𝑎, 𝑎′ ∈ ℝ, 𝑓 ∈ 𝐿2(ℝ), then

𝑈𝑎(𝑈𝑎′ 𝑓 ) (𝑥) = (𝑈𝑎′ 𝑓 ) (𝑥 − 𝑎) = 𝑓 (𝑥 − 𝑎 − 𝑎′) = 𝑓 (𝑥 − (𝑎 + 𝑎′)) = (𝑈𝑎+𝑎′ 𝑓 ) (𝑥)

for any 𝑥 ∈ ℝ, whence 𝑈𝑎𝑈𝑎′ = 𝑈𝑎+𝑎′ for all 𝑎, 𝑎′ ∈ ℝ. In particular, if 𝑎 ∈ ℝ, 𝑈𝑎 is
invertible (its inverse is 𝑈−𝑎) and it is thus enough to prove its preserves the inner
product on 𝐿2(ℝ) to prove it is unitary. Let then 𝑓 , 𝑔 ∈ 𝐿2(ℝ), and note that

⟨𝑈𝑎 𝑓 ,𝑈𝑎𝑔⟩ =
∫
ℝ

(𝑈𝑎 𝑓 ) (𝑥) (𝑈𝑎𝑔) (𝑥) d𝑥

=

∫
ℝ

𝑓 (𝑥 − 𝑎)𝑔(𝑥 − 𝑎) d𝑥

=

∫
ℝ

𝑓 (𝑦)𝑔(𝑦) d𝑦

= ⟨𝑓 , 𝑔⟩

by a change of variable. Hence (𝑈𝑎)𝑎∈ℝ is a one-parameter unitary group.
Let us now check the strong continuity. Let 𝑓 ∈ 𝐿2(ℝ), 𝑎 ∈ ℝ and (𝑎𝑛)𝑛∈ℕ ⊂ ℝ so

that 𝑎𝑛 → 𝑎. Let 𝜀 > 0. As continuously differentiable compactly supported functions
are dense in 𝐿2(ℝ), we may find 𝑔 ∈ 𝐶1(ℝ) supported on a compact set 𝐾 ⊂ ℝ so that

∥ 𝑓 − 𝑔∥2
2 < 𝜀.

Now we write

∥𝑈𝑎𝑛 𝑓 −𝑈𝑎 𝑓 ∥2
2 =

∫
ℝ

| 𝑓 (𝑥 − 𝑎𝑛) − 𝑓 (𝑥 − 𝑎) |2 d𝑥

≤
∫
ℝ

| 𝑓 (𝑥 − 𝑎𝑛) − 𝑔(𝑥 − 𝑎𝑛) |2 d𝑥 +
∫
ℝ

|𝑔(𝑥 − 𝑎𝑛) − 𝑔(𝑥 − 𝑎) |2 d𝑥

+
∫
ℝ

|𝑔(𝑥 − 𝑎) − 𝑓 (𝑥 − 𝑎) |2 d𝑥
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for all 𝑛 ∈ ℕ. The first and last integral are bounded by 𝜀. On the other hand, by the
mean value theorem, we may write

|𝑔(𝑥 − 𝑎𝑛) − 𝑔(𝑥 − 𝑎) |2 = |𝑔′(𝑐) |2 |𝑎𝑛 − 𝑎|2

for some 𝑐 between 𝑎𝑛 and 𝑎, and as 𝑔 ∈ 𝐶1(ℝ), its derivative 𝑔′ is continuous on the
compact 𝐾 , therefore bounded, and there is 𝐶 > 0 so that

|𝑔(𝑥 − 𝑎𝑛) − 𝑔(𝑥 − 𝑎) |2 ≤ 𝐶 |𝑎𝑛 − 𝑎|2, 𝑛 ∈ ℕ.

Thus, the second integral above is bounded by 𝐶 |𝐾 | |𝑎𝑛 − 𝑎|2, and since 𝑎𝑛 → 𝑎 as
𝑛→ ∞, it follows that

lim
𝑛→∞

∥𝑈𝑎𝑛 𝑓 −𝑈𝑎 𝑓 ∥2
2 ≤ 2𝜀.

Since 𝜀 > 0 was arbitrary, we deduce that 𝑈𝑎𝑛 𝑓 → 𝑈𝑎 𝑓 as 𝑛 → ∞, and (𝑈𝑎)𝑎∈ℝ is
strongly continuous.
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